Creating Value ...

... Delivering Solutions

Innovative Geotechnical Solutions for Replacement of the Milton-Madison Bridge

Bart Asher, P.E., P.L.S. Kentucky Transportation Cabinet Scott Zang, P.E. Michael Baker Jr., Inc.

Project Location

Canip Creek

\$50 million savings for Superstructure Replacement on Existing Piers over Tiber or Canip Creek Options

Tiber Creek B

Tiber Creek A

Superstructure Replacement

Superstructure Replacement Minimal Approaches

Existing Bridge

Proposed Bridge

Pier Cap Widening

Subsurface Investigation

Drilling Through Existing Pier

Existing Pier Evaluation

6.2. PIERS 6, 7 AND 8

Piers 6, 7, and 8 were found to be in generally good condition. All noted vulnerabilities will be addressed by structural rehabilitation necessary, resulting in a remaining service life in excess of 75 years.

EVALUATION OF MILTON MADISON BRIDGE SUBSTRUCTURES	SERVICE LIFE EVALUATION OF MILTON MADISON BRIDGE RIVER PIERS
But any	RECONTRACTIONS OF BOARD OF THE PRESERVATION OF

Pier Construction Methods

Pier Construction Methods

Pier Construction Methods

Analysis as a Conventional Spread Footing

Contraction scour

Local pier scour

Ignore softer soil response compared to rock

 $e = \Sigma M/\Sigma V = 21$ feet V = 20000 kips

The Bumble Bee Myth

Improved Analysis

"Told bumble bee he couldn't fly"

"Improve" the Loads

Barge Impact

"Improve" the Loads

Wind

"Improve" the Loads

Improve Foundation Resistance

Improve Foundation Resistance

<u>Step 2</u>

Account for difference in response between softer soil and harder rock.

Analysis Methodology

- Finite Element Method Required
- Using Midas GTS

Pier Response Concerns

Foundation/ Geotechnical design

- Pier top deflection at service limit state

Sliding at strength limit states V/H > 10 so not a problem

Eccentricity < 3/8 B at all limit states

 Peak foundation bearing pressure Strength limit state
= 0.45(75 ksf) = 33.75 ksf
Extreme limit state
= 1.0 (75 ksf) = 75 ksf

Summary of results for Pier 5 w/ Elastomeric Bearings*

Case	Min Bearing Stress (ksf)	Max Bearing Stress (ksf)	Factored Resistance (ksf)	Performance Ratio <u>Capacity</u> Demand	Deflection at top of pier (in)
EXT II	5.1	18.0	75.0	4.2	Y=3.47 X=0.13
STR III Max	6.2	29.7	33.8	1.1	Y=1.66 X=2.85
STR III min	4.4	21.7	33.8	1.6	Y=1.51 X=2.34
SER I	6.8	17.2	N/A	N/A	Y=0.88 X=0.57

* k = 200 k/ft

Bogosity

From: "Bogus"

The extent to which an engineering analysis has the potential to misrepresent reality

Bogometer

Validation (De-Bogification)

Validation (De-Bogification)

Bogosity

Bogometer

Bogosity

Bogometer

Pier Response Concerns

EXT-II: Barge Impact

Proposed Pier Strengthening

- 1) Drill holes into existing unreinforced caisson
- 2) Grout dowels into holes and extend above top of caisson
- 3) Add stem reinforcement
- 4) Form and cast collar and new cap

Conclusions

- The existing river piers can be reused to support the new truss.
- A refined analysis considering soil response is required during design.
- Scour mitigation is required to ensure soil response.
- The pier must be strengthened.
- Include these requirements in the design build documents.

Milton Madison Bridge River Pier Strengthening Evaluation

Questions?